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Abstract. This article is dedicated to the development 
of automatic methods for recognizing of isolated words 
with impulsive sounds. In this paper, it focuses on the 
main techniques used to characterize the impulsive 
signals and model operation. One of the main models is 
the notion of auditory filters. This article includes two 
parts, the first is devoted to traditional techniques; 
Fourier transform short-term is important concepts in 
signal processing and is used in many fields. The second 
deals with modern methods incorporating a model of 
auditory filter called gammachirp. In this section, we 
will extract the characteristics of a single word with 
impulsive noise using parameterization technique 
MFCC with the gammachirp filterbank (GCFB). For 
this, we have developed a system for automatic 
recognition of isolated words with impulsive noise 
based on Hidden Markov Models (HMM) and Gaussian 
Mixtures Model (GMM). For evaluation a comparative 
study was operated with standard MFCC. We propose a 
study of the performance of parameterization technique 
GCFB_MFCC proposed in the presence of different 
impulsive noises. 

Keywords: Gammachirp filterbank, MFCC, Fourier 
transforms FFT, impulsive noise.  

1 Introduction 

    Speech is a natural and flexible mode of 
communication for humans. It is very efficient, for 
transmission of information; conversational speaking 
rates can be as high as 200 words per minute. And for 
reception of information, has others advantages as well. 
Speech recognition is today a quite common element in 
our lives. Cellular phones, computers, telephone 
services and many more products use speech 
recognition. An important drawback affecting most of 
the speech processing systems is the environmental 
noise and its harmful effect on the system performance. 
The presence of noise normally degrades the 
performance of speech recognition; therefore it is very 
important that a speech recognizer in some way deals 
with possible noise. A large amount of work has 
therefore been spent in this area and there exists a lot of 
technique that improves the speech recognizer’s 
performances in noisy conditions. Signal theory tools 
for representation of signals and systems in the time 

domain or in the spectral domain, their study and 
analysis, modeling and interpretation. Detecting the 
absence or presence of a signal, signal with a noise and 
speech recognition are treated from problems. Indeed, 
the natural sounds are composed of noise, and the ear is 
sensitive to information related to this part [8]. With this 
noisy component, which is considerate for several years, 
we present the different characteristics of the noise part. 
    The purpose of this article is to introduce several 
important concepts in signal processing and illustrate 
them with relatively simple examples. At first, to focus 
on the study and analysis of impulsive noise by 
incorporating a model auditory filter called 
gammachirp.  In this paper, we propose two techniques 
for parameterization speech signals based on a 
gammachirp filterbank (GCFB) following the approach 
used in the technical MFCC. For this we will develop a 
system for automatic recognition of isolated words with 
impulsive noise based on HMM\GMM, the recognition 
system will serve as an evaluation of the impulsive 
signal by gammachirp filter. We propose a study of the 
performance of parameterization technique 
GCFB_MFCC proposed in the presence of different 
impulsive noises. The sounds are added to the word with 
different signal-to-noise (12dB, 6dB, 3dB, 0 dB and -3 
dB). The evaluation is done on the TIMIT database. In 
this work, a new approach for speech analysis based on 
gammachirp filters is shown. After extracting 
parameters we are interested to compare their 
performance with standard MFCC for the application of 
the speech recognition, the evaluation is conducted on a 
database of many speakers extracted from database.       
This paper is organized as follow the first section is to 
define the traditional techniques, the second section 
studies the gammachirp filter and the third section 
shows experimental result and conclusion. 

2 Characterization of speech signal 

    The main objective of the analysis speech signal is to 
extract some parameters such as voicing, pitch and 
formants. In this section, we provide some basic 
definitions and reminders that we use later in the 
document. 
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2.1   Speech production 

    The process of speech production is a very complex 
mechanism that is based on an interaction between 
physiological and neurological system. There are a lot 
of organs and muscles that are used in the production of 
sounds of natural language. The functioning of the 
human vocal device based on the interaction between 
three major classes of organs: lungs, larynx, and supra 
glottal cavities.  

 

Fig.1.  Diagram of the vocal apparatus 

    The first two classes provide what is essential for the 
production of any sound, whether musical or language: 
a source of air and noise source. The third class contains 
the organs that can change the sound that is produced by 
the joint work of the first two classes. Speech is a 
sequence of sound events contains voiced sounds 
characterized by the vibration of the vocal cords and 
unvoiced sounds. The spectrum of the sound emitted by 
the vocal cords is modulated by the resonant properties 
of the resonator body and lip position. Figure 2 shows 
the general operation of the vocal apparatus. 
 
 
 
 
 
 
 
 

 

Fig.2. The general operation of the vocal apparatus 

2.2   Impulsive noise 

    Impulsive noise is usually non-stationary, non-
Gaussian and very complex frequency behavior. It is for 
this reason that we are interested in the study of the 
noise. The duration of this noise is low in the order of 
second, theory feature is a Dirac. Include different 
source of impulsive noise such as door slam, 
explosions, phone ringtone, kick fusie…The pulses are 
generated by a process Y (t) and their amplitudes are 
defined by the sequence yi. The times of occurrence of 
the pulses are determined by a function N (t) called 

counting process. The pulses are generated from a 
delayed Dirac function in the form: 

                      Y(t) =∑ �� �  ��� 	 ��
���
�� .                    (1) 

2.3   The standard MFCC 

    There exists in the literature a wide variety of 
technical parameterization of speech signals, we 
mention the most important of which is revolutionizing 
in the field of speech recognition namely MFCC. The 
principle of our strategy is given by fig.3. 
 
 
 
 
 
 
 

Fig.3.  Example of parameterization (MFCC) 

    This technique consists in calculating the cepstral 
coefficients on a Mel scale which approximates the 
frequency of perception of the ear.  After applying a 
short time Fourier transform, energy is calculated in 
heather critical modeled by triangular filters on the 
amplitude scale is expressed in decibels. The frequency 
scale in turn is expressed in Mel. Cepstrum is then 
calculated by the following expression: 

              �� = √�
�∑ �log ������  cos (n (k -

�
�)

�
�).              (2) 

With k = 1...N and �� representing the energy after 
filtering by a k triangular filter.  

3 Gammachirp filter 

    The gammachirp filter is used in the psychoacoustic 
research as a reliable model of cochlear filter. The 
gammachirp filter is defined in the time domain 
(impulse response function) as: 
  ��(t) = ����exp (-2�bERB (� ) t)exp (j2�� +jclnt+jc!).   (3) 
Figure 4 shows the representation of the temporal 
response of the Gammachirp filter. 

 
Fig. 4.  Example of impulse response gammachip 

Where time t>0, a is the amplitude, �  is the asymptotic 
frequency and b are parameters defining the envelope of 
the gamma distribution. C is a parameter for the 
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frequency modulation or the chirp rate, φ is the initial 
phase, and ERB (� ) represents the equivalent 
rectangular bandwidth of the filter, is given by the 
following relationship: 
                      ERB (� 
 = 24.7 + 0.108� .                    (4) 
The Fourier transform of the gammachirp in “equation 
3” is derived as follows: 

   |G# (f)| = 
$|&�'()#
|

&�'
  * 
&�'


*�+,�-./01�23
45(�2�23
5*
6 e#8 .      (5) 

                    |G# (f)| = a& |G;| * e#8�2
.                          (6) 

                      < ��
 = arctan� B�BC
DEFG�BC
).                         (7) 

|HI��
| is the Fourier magnitude spectrum of the 
gammatone filter,J�K�B
, is an asymmetric function since 
is anti-symmetric function centered at the asymptotic 
frequency. The spectral properties of the gammachirp 
will depend on the J�K�B
, factor; this factor has 
therefore been called the asymmetry factor. The degree 
of asymmetry depends on “c”. If “c” is negative, the 
transfer function, considered as a low pass filter, where 
c is positive it behave as a high-pass filter and if “c” 
zero, the transfer function, behave as a gammatone 
filter. In addition, this parameter is connected to the 
signal power by the expression, [2]: 

                       C = 3.38 + 0.107 Ps.                             (8) 

 
Fig.5. Example of gammachirp spectrums for different 

values of C 

4 Characteristics of the gammachirp 

    The figure 6 shows a block diagram of the 
gammachirp filterbank. It is a cascade of three 
filterbanks: a gammatone filterbank, a lowpass-AC 
filterbank, and a highpass-AC filterbank. The output of 
the asymmetric compensation filterbank determines the 
asymmetric parameter c.  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Fig.6. Structure of the Gammachirp filterbank  

    Figure 7 shows the amplitude spectra of (a) the 
gammachirp and (b) the asymmetric function when the 
values of the chirp parameter c are integers between -3 
and 3. Several characteristics are derived from this 
figure. Figure 7 (a) shows that the filter slope below the 
peak frequency is shallower than the slope it in the 
gammachirp when the parameter c is negative. The 
situation is the reverse when the parameter c is positive. 
The filter shape is symmetric when c is zero because it 
is the gammatone. The asymmetric function in fig. 7(b) 
is an all-pass filter when c=0. This function is a high-
pass filter when c>0, and a low-pass filter when c<0. 
The slope and the range of the amplitude increase when 
the absolute values of c increases. The filter shapes of 
the gammachirp in fig. 7 (a) reflect these characteristics. 

 

Fig.7. Amplitude spectra of (a) a gammachirp filter 
and (b) an asymmetric compensation filter 

5 Parameterization gammachirp 

frequency cepstral coefficients 

    The Gammachirp frequency cepstral coefficients are 
extracted from the speech signal according to the 
following steps; use the gammatone filterbank with 32 
filters and the bandwidth multiplying factor F = 1.5 to 
bandpass the speech signal. The filter spacing is linear 
in the ERB scale. Additional, estimate the logarithm of 
the short-time average of the energy operator for each 
one of the bandpass signals, and estimates the cepstrum 
coefficients using the discrete cosine transform (DCT). 
    These steps are the main differences between MFCC 
and GCFB_MFCC feature extraction. The standard 
MFCC uses filters with frequency response that is 
triangular in shape (50% filter frequency response 
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overlap). But, GCFB_MFCC use filters that are 
smoother and broader than the MFCC triangular. Also, 
the Gammachirp MFCC filterbank is denser in 
frequency (controlled by the number of filters 
parameter). The feature extraction algorithm consists of 
the following steps fig. 8: 
i. Filter the speech signal using a gammachirp 

filterbank. 
ii. Estimate the energy coefficients of the framed 

bandpassed signals. 
iii. Transform these energy coefficients into the 

Cepstrum domain. Only the first low-order 
cepstral coefficients are kept for recognition (keep 
the first 12 coefficients, energy). 

iv. Estimate their first and second order time 
derivatives. 

 
 
 
 
 
 

Fig.8. The feature extraction algorithm 

6 HMM\GMM models parameters 

    Presently HMM is widely used as one of the 
successful speech recognition process. Using left-right 
HMMs [1] for the pattern recognition stage, offers the 
advantage that the time evolution of the signal features 
is taken into account. In this paper, M=3 successive 
states are considered for the signal features, 
approximately corresponding to the pulse attack, steady 
state, and fading phases. During the training process, the 
system learns the HMM characteristics of each 
considered signal class, by estimating a mixture 
Gaussian of the features, and the transition probabilities 
between states. This training is done with 20 iterations 
of the Baum-Welsh recursion [14]. During the pattern 
recognition process, the most probable class of signal is 
determined by log-likelihood estimation. Instead of the 
Forward-Backward Algorithm, the likelihood is 
evaluated using the Viterbi approximation [14], 
reducing the computation complexity. For each sound 
class, the statistical behavior of the features (Probability 
Density Functions) can be modeled with a mixture of 
Gaussians GMM. This model is characterized by the 
number of Gaussians, their relative weights, and their 
mean / covariance parameters. During a training 
process, the system learns the GMM parameters, by 
analyzing a subset of the sound database. In the 
recognition process, the signal to be classified is 
compared to the models of each class, so as to find the 
most probable one. 

7 TIMIT database 

    In this study, we built several words bases extracted 
from the TIMIT database. This database is composed of 

speakers speaking 8 different dialects of the United 
States. We used 6132 words composed of 21 words 
repeated, 292 times, 36 speakers (18 males and 18 
females) for training uniformly divided on 8 American 
dialects. For the test phase of recognition we used 2201 
words, 26 speakers (13 males and 13 females) repeated 
104 times uniformly divided on 8 American dialects. 
    These clean speech files were contaminated with 
additive impulsive noise, in this paper contains 464 
sounds of 3 different classes: 314 door slams, 88 glass 
breaks and 62 explosions. Tests were carried out at 
different SNR levels (12dB, 6dB, 3dB, 0 dB and -3 dB).  
The signal to noise ratio (SNR) defined: 

                        SNR = 10.MN��O(
PQRSTUV
PTWRQX ).                      (9) 

Where PZ[\'$] and P'^[Z_ represent respectively the    

power signal and the noise.   

8 Word recognition in impulse noise based 

on a gammachirp filterbank 

    Speech signal processing is based either on frequency 
or on temporal representation and modeling of the 
human auditory system for improving the design of 
hearing devices. The analysis of speech signals is 
operated by using a gammachirp filterbank, in this work 
we use 32 gammachirp in each filterbank (of 4th order, 
n = 4), the filterbank is applied on the frequency band of 
[0 fs/2] Hz (where fs is the sampling frequency), after a 
pre-emphasis step and a segmentation of the speech 
signal into frames, and each frame is multiplied by a 
Hamming windows of 45ms. Each gammachirp filtering 
is obtained across two steps, in the first step, the speech 
frame is filtered by the correspondent 4th order 
gammatone filter, and in the second step we estimate the 
speech power and calculate the asymmetry parameter c 
as shown in the following fig. 9, the algorithm uses 
decomposition through a gammachirp filterbank, where 
the center frequency of each gammachirp filter has a 
bandwidth and spacing ERB that cover the 50-8000 Hz 
range. Each signal is analyzed in order to compute its 
energy and envelope. The principle of our strategy is 
given by fig. 9. The first step of the recognition 
algorithm consists in an analysis of the signal to be 
classified, in view of extracting some typical features. 
To evaluate the suggested techniques, we carried out a 
comparative study with different baseline 
parameterization technique of MFCC implemented in 
HTK. We tested the performance in speech signal 
recognition with additive impulsive noise. Figure 10 
shows the difference between the recognition of the 
word "greasy" (with impulse noise) using traditional 
techniques (FFT) and gammachirp filterbank. 
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Fig.9. Step of the recognition algorithm 

 
(a)                                                          (b)                                                        (c) 

 

                                                              
                                                                                       (d)                                                            (e) 
 

Fig.10.  (a) Signal “greasy”, (b) Signal “greasy” with the noise “door slams”, (c) Signal windowing “greasy”, (d) Characteristics of 
Gammachirp filterbank, (e) Auditory spectrogram of the word “greasy” with noise “door slams”; SNR = -3dB
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9 Result and discussion  

    In this section, we illustrate the various output 
representations that are generated by the gammachirp 
filterbank and compare them to STFT representations. 
This article is dedicated to recognize the isolated word 
with impulsive sound. An extensive database with more 
than 500 sound samples has been built. This database is 
made of 3 impulsive sound classes: door slams, 
explosions and glass breaks.  
    Figure 10 shows the STFT spectrogram and the 
gammachirp spectrogram for the word “greasy” with the 
noise “door slams”. Because the values of the 
spectrogram are log compressed, it is difficult to 
observe the compressive effect of the gammachirp.  
However, for both the gammachirp outputs, spectral 
peaks for voiced segments of speech appear to be more 
prominent against the background in all three noises 
than for the STFT spectrogram. Although, the 
gammachirp and STFT spectrograms appear very 
different. First, in the segment between 0.05 and 0.2 

seconds, the gammachirp output exhibits a more 
pronounced formant than for the STFT. On the other 
hand, the low frequency resonances appear to be more 
strongly emphasized by the gammachirp, and the 
bandwidths of most resonances also appear to be much 
narrower.  
    Tables 1, 2, 3, 4 and 5 shows the results associated 
with the rate recognition of MFCC parameterization 
technique, using “energy”, “delta” and “delta+delta” 
vectors according to the signal to noise ratio (SNR).   
We define the parameters as below. 
N: The total number of words to be recognized, 
D: The number of words not taken, 
S: The number of unrecognized words, 
H: The number of recognized words, 
   %: The percentage rate obtained. 
One Performance measures, the correct recognition rate 
(CORR) is adopted for comparison. They are defined as:   

 % CORR = no. of correct labels / no. of total labels * 100% 

 

Table 1.  Recognition rates obtained by the parameterization technique combined with SNR = -3dB 
 

 SNR=-3dB/ Explosions SNR=-3dB/ Door slams SNR=-3dB/ Glass breaks 

% N H S D % N H S D % N H S D 

MFCC_e_d_a 87.00 2201 2003 198 0 75.79 2201 2019 182 0 85.79 2201 2100 101 0 

GCFB_MFCC_e_d_a 91.85 2201 2002 199 0 77.85 2201 2001 200 0 89.85 2201 2050 151 0 

 

Table 2.  Recognition rates obtained by the parameterization techniques combined with SNR = 0dB 

 
 SNR=0dB/ Explosions SNR=0dB/ Door slams SNR=0dB/ Glass breaks 

% N H S D % N H S D % N H S D 

MFCC_e_d_a 93.14 2201 2050 151 0 83.14 2201 2052 149 0 87.14 2201 2060 141 0 

GCFB_MFCC_e_d_a 95.87 2201 2112 89 0 85.20 2201 2112 89 0 90.20 2201 2100 101 0 

 

Table 3.  Recognition rates obtained by the parameterization techniques combined with SNR = 3dB 

 

 SNR=3dB/ Explosions SNR=3dB/ Door slams SNR=3dB/ Glass breaks 

% N H S D % N H S D % N H S D 

MFCC_e_d_a 95.36 2201 2165 36 0 88.36 2201 2155 46 0 88.36 2201 2160 41 0 

GCFB_MFCC_e_d_a 98.53 2201 2174 27 0 98.00 2201 2174 27 0 91.00 2201 2163 38 0 

 

Table 4.  Recognition rates obtained by the parameterization techniques combined with SNR = 6dB 
 

 SNR=6dB/ Explosions SNR=6dB/ Door slams SNR=6dB/ Glass breaks 

% N H S D % N H S D % N H S D 

MFCC_e_d_a 98.64 2201 2171 30 0 92.64 2201 2166 35 0 98.64 2201 2170 31 0 

GCFB_MFCC_e_d_a 99.10 2201 2182 19 0 96.10 2201 2170 31 0 98.72 2201 2179 22 0 
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Table 5.  Recognition rates obtained by the parameterization techniques combined with SNR = 12dB 

 

 SNR=12dB/ Explosions SNR=12dB/ Door slams SNR=12dB/ Glass breaks 

% N H S D % N H S D % N H S D 

MFCC_e_d_a 98.84 2201 2181 20 0 94.64 2201 2176 25 0 99.64 2201 2190 11 0 

GCFB_MFCC_e_d_a 99.88 2201 2192 9 0 99.10 2201 2189 12 0 99.95 2201 2199 2 0 

    
   In the previous section, we present the results of the 
gammachirp parameterization and the traditional 
method MFCC. We can see the comparison between the 
MFCC and GCFB_MFCC, these MFCC Gammachirp 
give better results in generalization and the better 
performance with add energy, the delta, acceleration of 
signal and the SNR. 
    The feature-based gammachirp filterbank reduces the 
relative word error rate by 5-10% for the different 
sound. The improvement is benefited from using a 
gammachirp filterbank instead of the triangular mel 
filterbank, table 1, 2, 3, 4 and 5 detailed results of word 
recognition accuracy rate are shown. In table I the 
recognition accuracy of the GCFB-MFCC, is 91.85%, 
but the results change the noise of another, and we see 
an improvement of recognition rates with energy, the 
delta and acceleration coefficients. 

10 Conclusion 

    This paper reviewed the background and theory of the 
gammachirp auditory filter proposed by Irino and 
Patterson. The motivation for studying this auditory 
filter is to improve the signal processing strategies 
employed by automatic speech recognition systems. We 
have presented an approach of time-frequency analysis 
“auditory spectrogram” for speech. This takes account 
of characteristics of the ear. Were analyzed the 
impulsive noise based on a gammachirp filterbank, in 
word recognition. The gammachirp was compared to the 
short time Fourier transforms. Parameterizations 
implemented showed their performance with 
recognition system Automatic HTK speech based on 
Hidden Markov Models given word recognition. We 
observe that the worst results are those obtained with the 
basic modeling and best are those obtained with the 
model with gammachirp filterbank. Concerning this 
article, we presented the implementation of the 
gammachirp model of the cochlear filter. We validated 
this implementation by its use in analysis of some word 
with impulsive noise. The results gotten after 
application of this filter on the word show that this filter 
gives acceptable and sometimes better results by 
comparison at those gotten by other methods of 
parameterization such MFCC and PLP. 
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